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Abstract

This paper presents a way of providing users with a

persistent object running under the Apertos operating

system. We present an implementation of persistent

objects by using object migration between metaspaces

in the re
ective object architecture. An Apertos object

is stored into stable storage by migrating to a stor-

age metaspace that is an abstraction of object storage.

We also present the current status of the implementa-

tion.

1 Introduction

Advancing hardware technology enables large dis-

tributed computer networks, including portable and

mobile computers, such as laptop and notebook com-

puters. In such a computer network, users and objects,

such as computers, storage media, data, system soft-

ware, and other resources, are moving around freely.

The computational �eld model [12] provides a frame-

work for dealing with such large distributed systems.

To provide a useful interface for a large, complex

distributed system, a distributed operating system

should be able to provide the same computing envi-

ronment to each user as he/she accesses any computer

in the distributed system. Currently, however, a user
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must adapt his/her computing environment to the lo-

cal execution environment by himself/herself. For ex-

ample, we use a workstation at the o�ce, a personal

computer at home, and a laptop or notebook com-

puter in a train or airplane. In these situation, we

must change our personal computing environment and

customize that environment to each hardware, archi-

tecture, operating system, and system software.

Furthermore, when we change computers, we must

suspend active jobs on the �rst computer and restart

them on the next computer. In the above mentioned

example, before we come back home, we �rst save edit-

ing �les and stop our applications. Then, we copy and

translate saved �les from a workstation to a mobile

computer. To process the saved �les, we start some

applications on the mobile computer, in the train, say.

When we get home, wemust copy the editing �les from

the mobile computer to our personal computer. Thus,

our computing environment is not continuous and we

must change the way in which we work. This disconti-

nuity forces us to deal with non-creative tasks, that is,

to suspend and to resume our jobs. And this increases

the di�culty of our computer system.

Our goal for a persistent object system running un-

der the Apertos operating system is to provide a con-

tinuous computing environment to each user, when-

ever the user logs on any computer in a large com-

puter network that features mobile hosts. We believe

this goal can be realized by giving persistence to a

user's computing environment.



Recent distributed �le systems, such as AFS and

Coda, have succeeded in providing a unique perspec-

tive of directory structures for each user [10]. A user of

such a distributed �le system can obtain the same view

whenever the user logs on from any computer that is

part of the �le system. Argus [7] and Camelot/Avalon

[4] provide distributed persistent objects and atomic

transaction facilities based on the nested transaction

technique [8]. Object-oriented databases [6], such as

ORION, GemStone, and ObjectStore, and persistent

programming languages with object storages, can give

persistence to programming language objects. Object-

oriented databases and persistent programming lan-

guages provide a means of solving the impedance mis-

match problem.

The Apertos operating system is an object-oriented

operating system. Everything is represented as a con-

current object with a computation power (called an

Apertos object). An Apertos object encapsulates its

states, the methods that access that state, and the

virtual processor that executes its methods. A user's

computing environment in the Apertos operating sys-

tem consists of a group of concurrent objects that com-

municate with each other. Furthermore, these objects

are distributed throughout many computers.

We realized a persistent object system based on

the re
ective architecture provided by the Apertos

operating system. Two metaspaces, m

Persistent

and

m

Storage

, provide Apertos objects with an execution

environment of persistent objects and an abstraction

of object storage, respectively. An object migration

mechanism gives programmers and users a uniform

perspective to control the persistence of Apertos ob-

jects.

This paper consists of the following sections. Sec-

tion 2 discusses the continuity of a computing envi-

ronment in a distributed operating system. Section 3

discusses the realization of persistent objects on the

Muse Object Architecture [14]. The Apertos operating

system allows users and programmers to work in dif-

ferent abstraction levels throughout the object system.

Section 4, shows the current state of implementation

for a persistent object system. Finally, in Section 5,

future work and concluding remarks are presented.

2 Continuity of Computing Environ-

ment

Figure 1 shows a goal for the persistent object sys-

tem in the Apertos operating system, i.e., to provide

a continuous computing environment. A user accesses

a large computer network with a terminal computer

A, and performs his tasks. The user moves from com-

puter A to computer B taking his/her mobile com-

puter, and continues his/her tasks, on the mobile com-

puter. Computer B, the user connects his mobile com-

puter to a network and continues his/her tasks on com-

puter B or the mobile computer.

large computer network

A B

move with mobile computer

Figure 1: Continuous Computing Environment

To realize the continuous computing environment,

many issues must be solved. These are summarized as

follows:

� Object Naming

An object must have a unique identi�er within a

large distributed computer network. Di�culties

involved in naming are in the migration of ob-

jects and the size of the networks. [5] proposes

an object naming and addressing scheme without

a global view. In this scheme, an object can have

an identi�er when the object moves around net-

works. The Apertos operating system uses this

scheme for naming Apertos objects.

� Persistence

A computing environment should be saved to and

resumed from stable storage. An Apertos object

can satisfy the requirements of persistence in our

system.

� Object Group



Usually, we use multiple applications in multiple

windows and access several server processes that

exchange information. A group of related objects

must be managed in a persistent system to main-

tain the consistency of a group and provide op-

erations to an entire group such as migration of

an object group. V-kernel [2] and ISIS [1] realize

a group of concurrent activities, i.e., a distributed

process group, and provide group operations for

maintaining its membership. Group operations

include create, destroy, join, and leave.

� Mobile Computing

In a mobile computing environment, everything

can move around networks. So, we must �rst con-

sider the migration of objects to design a persis-

tent system running under the Apertos operating

system.

3 Persistent Objects Realized on the

Re
ective Architecture

We will discuss the realization of persistent objects

on the re
ective architecture of the Apertos operat-

ing system. This section �rst overviews the re
ective

architecture from the viewpoint of constructing an op-

erating system. Then, we discuss re
ective computing

for changing the computing environment. Object mi-

gration between metaspaces is introduced as the basic

mechanism of re
ective computing. Re
ectors and a

re
ector class hierarchy are provided to create a new

metaspace. Finally, we present the realization of per-

sistent objects based on object migration and persis-

tent metaspaces.

3.1 Re
ective Architecture

We employ the notation of concurrent object-

oriented computing [16] to model an object. [15] in-

troduce a re
ection mechanism for the construction

of an operating system. Each object encapsulates its

state, the methods that access the state, and a virtual

processor that executes the methods. Here, a virtual

processor of an object can be viewed as a metaobject.

A metaobject is an object that represents part of the

behavior of that object. A metaobject supports, for

example, a way communicating with another object, a

virtual memory management policy, a means of han-

dling a faulty operation, and a storage management

policy. In the model, an object is supported by a group

of metaobjects. Here, we call a group of metaobjects

a metaspace. An object has the execution semantics

that are provided by the metaobjects in a metaspace.

Figure 2 shows a model where a white circle rep-

resents an object and a gray area represents a metas-

pace. Since the metaobject composing a metaspace

metaobject
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metaobject
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metaobject
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metaobject
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metaobject
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metaobject
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Figure 2: Model of Apertos Object Architecture

is an object, we must introduce a metaspace for a

metaobject, so that the object and its metaspace are

represented within its metahierarchy.

The relationship between an object and metaob-

jects composing its metaspace is relative. In Fig-

ure 2, metaspaces (S

1

), (S

2

), and (S

3

) are composed

of metaobjects for objects (a) and (b), object (c), and

object (d), respectively. Also, metaspaces (S

4

) and

(S

5

) are composed of metaobjects for metaobjects (e)

and (g), and metaobjects (i) and (k), respectively.

Here, metaobjects (e) and (g) are members of metas-

pace (S

1

) for objects (a) and (b), i.e., (e) and (g) are

metaobjects of (a) and (b), whereas they are objects

whose metaspace is (S

4

).

Furthermore, since a metaspace consists of metaob-

jects, a metaobject can be shared between metaspaces.

In the �gure, metaobject (f) is shared between metas-



paces (S

1

) and (S

4

). Also metaobjects (g) and (j) are

shared between metaspaces (S

1

) and (S

2

), and metas-

paces (S

2

) and (S

3

), respectively. Thus, given an ob-

ject, we can construct a metahierarchy composed of

the hierarchy of metaspaces whose root is an object.

3.2 Re
ective Computing in Operating

Systems

A re
ective architecture provides users and pro-

grammers with mechanisms for re
ective computing,

which we call re
ection. Re
ective computing is de-

�ned as a process for improving object behavior by

representing the behavior of an object and by reason-

ing about the object itself.

An operating system should be constructed by us-

ing object-oriented technology, in which everything

within a system that should be shared and pro-

tected is an object. This encourages modularity,

increases reusability and maintainability, and gives

users/programmers a single perspective of the system,

and also it makes it possible to construct a system that

is large in scale and complexity. However, when we

consider everything as being an object, we encounter

some di�culties. For example, it is di�cult to inspect

the internals of an object, because an object is pro-

tected against access from other objects. Therefore,

every object must provide a method of exposing its

internals. That will be helpful in the implementation

of a debugger. Also, it is di�cult to implement an

object manager such as an invocation manager and a

scheduler, because they need to access metadata such

as the representation of a message and a scheduling

state of object. The object architecture discussed in

the previous subsection can overcome these di�culties.

In this sense, an operating system should be based on

a re
ective architecture.

Further, an operating system should provide

users/programmers with multiple abstractions, be-

cause it will become di�cult to satisfy all the require-

ments of users/programmers as the scale of the system

grows. The above model can provide multiple abstrac-

tions in the way shown in Figure 3. A new abstraction

is given by objects de�ned below the thick line. In this

�gure, one thick line provides the upper objects with

kernel mechanisms such as object scheduling, invo-

cation management, and memory management. An-

other thick line adds new services such as persistent

objects and realtime scheduling.

By using these multiple abstraction levels, a pro-

grammer can realize system level facilities and appli-

cation level facilities in a uniform manner, that is con-

current object-oriented programming, provided by the

object-oriented re
ective architecture.

3.3 Object Migration

In an open and mobile computing environment,

everything including computer, users, processes, and

resources moves around networks for load balanc-

ing, availability, reliability, fault-tolerance, and so on.

Thus, a distributed operating system should �rst pro-

vide facilities to support migration of objects.

Here, we believe a location of object, i.e., host com-

puter, is one of property of object. Thus, we introduce

object migration as a basic mechanism for re
ective

computing and for mobile computing in the Apertos

operating system, where an object travels within a

metahierarchy.

In Figure 2, for example, we say object (a) of metas-

pace (S

1

) migrates to metaspace (S

2

), that is, object

(a) changes its metaspace from (S

1

) to (S

2

). In Figure

3, an object de�ned above a thick line can migrate to

another thick line. In this case, if metaspace (S

1

) and

(S

2

) are in the same host, object (a) does not move to

the host computer. Otherwise, if the two metaspaces

are in di�erent hosts, the object migrates between the

host computers.

It is helpful for users and programmers to de�ne

object migration as a basic mechanism for re
ective

computing. We can describe operating system services

within a single framework. For example, an object can

migrate to a metaspace that has debugging facilities,

that is, an object is debugged. In this case, since a

metaobject represents the internals of an object, a de-

bugger can be implemented as a metaobject.

The structure of an operating system facilitates ob-

ject migration. Since the internals of an object are rep-
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Figure 3: Multiple Abstractions

resented as metaobjects, moving an object is equiva-

lent to transferring metaobjects to a target metaspace.

Here, transferring metaobjects can also be considered

as object migration. In this way, re
ection can be

viewed as object migration. An object migrates be-

tween metaspaces in the following way.

1. An object sends a migration request to its

metaobject. The metaspace to which the object

migrates is speci�ed.

2. A metaobject selects a new metaspace and checks

the compatibility between the object and the des-

tination metaspace.

3. If the object is compatible with the destination

metaspace, the object migrates from the source

metaspace to the destination metaspace.

3.4 Re
ectors

A re
ector is a metaobject that represents a metas-

pace. That is, it provides an object with metaoper-

ations that expose the mechanisms of re
ective com-

puting and de�nes a group of metaobjects. A meta-

operation is an operation in which an object changes

its behavior. A re
ector is de�ned within a class hier-

archy, that we call the re
ector class hierarchy.

The top of the hierarchy ism

Common

1

, an abstract

class that provides succeeding re
ectors with common

facilities such as object migration and descriptors that

designate metaobjects representing objects.

mCommon

mZero mClassmBase

mPersistent

mStorage

mDrive mSystem

Figure 4: Part of Re
ector Class Hierarchy

There are several re
ectors de�ned as subclasses of

m

Common

as shown in Figure 4. Re
ectors and their

re
ector class hierarchy describe protocols for re
ec-

tion programming. m

Zero

is a re
ector that repre-

sents a metaspace for re
ector programming. m

Base

is a re
ector that provides a metaspace for concurrent

1

In this paper, we use notation m

Re
ector

to indicate a

re
ector.



objects. m

Drive

is a re
ector that provides metaop-

erations for interrupt handler programming of device

drivers. m

System

is a re
ector that supports system

objects in kernel mode. m

Class

is a re
ector that rep-

resents a metaspace for class objects which are static

and immutable templates for objects [15], so that it

provides metaoperations to manage classes such as re-

locating code segments and inspecting the internals of

a class. Two re
ectors m

Storage

and m

Persistent

re-

alize the persistence of Apertos objects, as described

in the next subsection. We can de�ne a new re
ec-

tor that has new metaoperations as a subclass of an

existing re
ector.

3.5 Metaspaces for Persistent Objects

Persistence is one of property of object, and the re-

alization of persistent objects needs the internal struc-

ture of objects. Thus, we design a persistent system

as a metaspace and a re
ector in the object architec-

ture. In this system, an Apertos object can acquire

persistence properties by migrating to the metaspace

for persistence dynamically. Also, object storage is de-

signed as a metaspace and a re
ector for providing a

uniform perspective about the location of an Apertos

object such as host computers, memory, disks, tapes,

and other storage media. In the rest of this sub-

section, we describe two metaspaces, m

Storage

and

m

Persistent

.

3.5.1 m

Storage

An object storage manages objects in a stable storage

system and controls accesses to the objects. Figure 5

shows m

Storage

, is an object storage in the Apertos

operating system. In this �gure, a dashed arrow repre-

sents a relationship between an object and its re
ector.

m

Zero

is a re
ector of m

Base

, and m

Base

is a re
ec-

tor of object (A). When Apertos object (A) migrates

to the m

Storage

metaspace, object (A) is stored into

stable storage, a disk device object in the m

Storage

metaspace. So, there is no load or save operation in

m

Storage

level. Object migration is a unique inter-

face to change properties of objects. In this �gure, an

object migration from m

Base

metaspace to m

Storage

metaspace corresponds to a save operation. An object

migration from m

Storage

metaspace to m

Base

metas-

pace corresponds to a load operation.

Of course, in a lower abstraction level, save and

load operations are provided, and the programmer can

override such operations to customize the object stor-

age. This illustrates the advantage of the re
ective

architecture from the viewpoint of uniformity.

Zero

Base Persistent Storage

object migration

Figure 5: m

Storage

3.5.2 m

Persistent

Figure 6 showsm

Persistent

, a re
ector to support per-

sistent objects. When Apertos object (A) migrates to

m

Persistent

metaspace, �rst a replica of that object

(A2) is created in the m

Storage

metaspace. Changes

in Apertos object (A) are propagated to replica (A2)

to enable the recovery of object (A).

Zero

Base Persistent Storage

object migration

replication

Figure 6: m

Persistent

A group of related objects, that exchange messages,

requires to maintain the consistency between replica



of objects in the group. The system should prevent

lost messages and orphan messages [11]. To archive

these goals, m

Persistent

manages an object group and

creates a distributed object group. Objects, belonging

to the same group and which are on the same host,

are on the same m

Persistent

re
ector. m

Persistent

re
ectors on di�erent hosts create a distributed object

group by using techniques in V-kernel [2] and ISIS [1].

m

Persistent

updates replicas of objects, that be-

long to a same group, at one instant to assume consis-

tency between the replicas. So, communications be-

tween an object on m

Persistent

and an object on an-

other metaspace invoke a group operation for main-

taining membership of the group. For example, in

Figure 7, when object (B) on m

Base

sends a message

to object (A) onm

Persistent

, object (B) migrates from

m

Base

to m

Persistent

. Finally, object (A) and object

(B) become to join a same group maintained by the

m

Persistent

.

Zero

Base Persistent Storage

object
migration

replica

send

group

Figure 7: Object Group in m

Persistent

4 Implementation

The Apertos operating system is being imple-

mented on Sony NWS-1400, PWS-1500, and NWS-

1700 workstations. The kernel and re
ectors m

Zero

,

m

Base

, m

Drive

, and m

Storage

are already running.

Metaobjects such as managing virtual memory, stor-

age, disk devices, network devices, SCSI controllers,

and console devices are also available.

The system is implemented using the AT&T C++

programming language [3]. Libraries for programming

in the Apertos system are provided. Group operations

between hosts are now being implemented.

Figure 8 shows an overview of the persistent object

system. A white circle is an Apertos object, while a

gray circle is a metaspace. the persistence of Apertos

objects is realized by two re
ectors, m

Persistent

and

m

Storage

, and the metaobjects in their metaspaces.

mZero

mPersistent
mStorage

VM
Storage Disk

SCSI

mDrive

Figure 8: Implementation of Persistent Object System

In this section, we �rst describe the internals of

Apertos objects. Then, we describe the re
ectors and

objects necessary to realize the persistent Apertos ob-

ject. The prototype system and its measurements are

also given.

4.1 Internals of Apertos Object

The Apertos operating system boots from a boot

image into which several Apertos system objects and

Apertos object classes are packed. An Apertos object

is created from a class, except for some basic system

objects.

4.1.1 Class Format

An Apertos class consists of metainformation and mul-

tiple bodies. Metainformation contains three types of

information, (1) re
ector information, (2) type infor-

mation, and (3) body information.

Re
ector information is used for initializing meta-

data in the re
ector when it creates an object. This

includes:



� system stack size,

� user stack size,

� scheduling priority,

� CPU priority (interrupt mask level),

� execution mode (user model or kernel mode), and

� name of default re
ector.

Type information speci�es the interface of the class.

This is used to send a message from other languages,

such as the shell language. The contents of the type

information are as follows.

� symbol name of class

� version number

� number of methods

� method interfaces, i.e., selector id, selector name,

return type, and argument names and their types

A class can have multiple di�erent bodies. Body

information speci�es one of class body.

� type of body: There are several types of class

body, such as binary, source code, byte code, or

interpreter code. Currently, only binary code is

used.

� CPU type: The CPU type is speci�ed for a binary

body.

� format: For a binary body, the �le format of the

body, such as AOUT format or COFF format, is

speci�ed.

� version number: A version number of the body is

speci�ed.

4.1.2 Object Format

An object in virtual memory consists of a set of seg-

ments and two metadata, Context and Descriptor.

A Context is an abstraction of the CPU and is man-

aged by MetaCore (a micro-kernel). A context has a

register set, program counter, and so on.

A Descriptor is created and managed by a re
ector

of the object. The contents of the descriptor depend

on a re
ector. A descriptor ofm

Base

has the following

data.

� scheduling status

� memory segment information

� scheduling priority

� CPU priority (interrupt mask level)

� message queue

� context identi�er

� object identi�er

� class identi�er

For an m

Base

object, an object can have any of the

following six types of scheduling status.

1. DORMANT: an object waits for a message.

2. READY: an object is ready to be run.

3. RUNNING: an object is running.

4. WAIT: an object waits for a reply to a Call mes-

sage.

5. METAWAIT: an object waits for a reply to a meta

call from its re
ector.

6. SUSPEND: an object is suspended.

A driver object on m

Drive

has one more status

IOWAIT that waits for an interrupt. The m

Zero

object has four status, DORMANT, SUSPENDED,

READY, and RUNNING.

The body of an Apertos object is a set of segments.

There are three types of segments,

� text segment,

� data segment, and

� stack segment.

By using metainformation in descriptor, a re
ector

migrates and controls Apertos objects.

4.1.3 Instantiation of an Object

To install several related objects in one address space,

an object management system can allocate an object

into one slot (small part of an address space). The

size of the slot is �xed in an address space. A re
ec-

tor object instantiates an Apertos object from a class,

using the following steps.

1. To obtain class information, the re
ector sends a

message to the m

Class

re
ector.

2. The re
ector gets an object identi�er for the

newly created object by sending a message to

namer object.

3. The re
ector allocates memory space to the ob-

ject by sending messages to the VM objects that

manages virtual memory of the system. An ob-

ject has its own memory space that is speci�ed

as an address space identi�er and slot identi�er.



An Apertos object management system divides

one address space into several slots. When an ob-

ject executes in user mode, the VM object tries to

allocate one slot for the object from an existing

address space. But, if there is no free slot, a new

address space is created and a slot is obtained

from the newly created address space. When an

object executes in kernel mode, the object man-

ager allocates a slot from the kernel space.

4. The VM manager allocates segments, such as a

text segment, data segment, and stack segment,

in the assigned slot.

5. The re
ector creates a new descriptor to schedule

and manage the created object.

6. Finally, the re
ector schedules the created object.

4.1.4 Migration of an Object

An Apertos object can migrate from one re
ector to

another re
ector, using the following steps. We as-

sume that object (O) in re
ector (X) tries to migrate

from re
ector (X) to re
ector (Y).

1. Object (O) calls Migrate (target re
ector (Y)) to

its re
ector (X).

2. Re
ector (X) checks the compatibility between

object (O) and the re
ector (Y). If they aren't

compatible, the re
ector returns an error code to

object (X).

3. Re
ector (X) sends a message to (Y) and (Y) cre-

ates a descriptor for the object (O).

4. The contents of the descriptor for (O) in re
ec-

tor (X) are transformed into the corresponding

descriptor in re
ector (Y).

5. Segments of object (O) managed in re
ector (X)

are transformed into re
ector (Y).

6. The descriptor in (X) is deleted.

7. Re
ector (Y) schedules object (O).

These steps relate to migration between re
ectors

for objects in virtual memory. The steps constituting

migration between virtual memory and stable storage

are described in the next two subsections.

4.2 m

Storage

Metaspace

The m

Storage

re
ector provides an abstraction of

object storage. The current m

Storage

metaspace con-

sists of Storage, Disk, and SCSI system objects. The

Storage object is described in the next subsection. The

Disk object provides a raw device interface with the

disk device. The SCSI object provides an interface

with the SCSI controller.

The m

Storage

re
ector supports the following op-

erations:

� The Call operation sends a message to an object

in stable storage. If the target object has not

migrated in a metaspace that supports objects

in virtual memory, such as m

Base

, the re
ector

moves the target object from this space tom

Base

.

Then, the re
ector delivers the message to the

migrating object. Otherwise, if the target object

has already migrated to a metaspace for objects in

virtual memory, the re
ector delivers the message

to the loaded object.

� The Send operation performs the same operation

as Call except thatm

Storage

delivers a Send mes-

sage instead of Call message.

� The New operation creates a new object in stor-

age.

� The Delete operation removes an existing object

from storage.

� The Find operation returns a map from an object

to its re
ector.

� The Migrate operation moves an object to an-

other metaspace. When a target metaspace is a

metaspace for objects in virtual memory, the ob-

ject is loaded.

� The MigrateIn operation from another re
ector

moves an object on the caller re
ector to the

m

Storage

metaspace, and the object is saved into

the stable storage.

m

Storage

provides a more generic interface of ob-

ject storages. A programmer can create other cus-

tomized storage metaspaces with di�erent disk alloca-

tion policies, device types, media types, and so on.

The following steps detail object migration from

m

Base

to m

Storage

.



1. Four free storage identi�ers are allocated to the

object. A storage identi�er corresponds to an i-

node number in the UNIX

2

�le system.

2. A new descriptor for m

Storage

for the migrating

object is created by transforming a descriptor of

the m

Base

re
ector.

3. The new descriptor, containing the storage iden-

ti�ers for all segments, is saved to disk. This con-

tains Context and the contents of the descriptor in

the m

Base

re
ector. The contents of the descrip-

tor and the number of saved segments depend on

the status of the saved object. If the object is

DORMANT, the CPU structure and register sets

in context, the message queue, and a stack seg-

ment are not saved. If the object is READY, the

message queue should be saved. METAWAIT sta-

tus requires that the CPU structure and message

queue are saved. An object in WAIT status or

SUSPEND status can not migrate to m

Storage

.

It will be saved to storage by waiting for the state

change. But, this is not implemented.

4. All segments are saved into the storage object.

In the current implementation, di�erent storage

identi�ers are assigned to each segment.

5. The old descriptor in m

Base

is deleted.

On the other hand, an Apertos object migrates

from m

Storage

to m

Base

, in the following steps.

1. In this case, we assume an object (X) on m

Base

sends a message to an object on m

Storage

.

2. m

Storage

sends a MigrateIn message to the

m

Base

re
ector to load object X.

3. By using an i-node entry to designate an Aper-

tos object, is described in Section 4.4 in detail, a

descriptor of object (X) in the m

Storage

is read

from the disk.

4. All segments are loaded from the disk.

5. A new descriptor for object (X) is created

in m

Base

by transforming a descriptor of the

m

Storage

re
ector.

6. Them

Base

re
ector creates a new context for ob-

ject (X) and sets values for the context.

7. The m

Base

re
ector schedules object (X).

2

UNIX is a registered trademark of AT&TBell Laboratories.

4.3 m

Persistent

Metaspace

Them

Persistent

re
ector provides facilities for per-

sistence and management of object groups. The

metaspace consists of a VM object for managing vir-

tual memory.

The m

Persistent

re
ector supports the following

operations:

� The Call operation invokes a method de�ned in

the target object. This activates the internal

scheduler that determines an object to be acti-

vated next. If the target is not ready to accept the

request, it is stored into the queue maintained in

m

Storage

. As described in the previous section, a

receiver object migrates to m

Persistent

for join-

ing a group.

� The Send operation performs the same operation

as a Call operation, except that the object that

initiates the Send operation continues execution.

A receiver object migrates to m

Persistent

.

� The Reply operation delivers the result back to

the sender object. It activates the internal sched-

uler to �nd the object to be activated next. If

a request is pending for the object initiating the

Reply operation, it is scheduled for processing.

� The Migrate operation moves an object to an-

other metaspace. The object leaves the group

managed by the re
ector.

� The Checkpoint operation takes frozen images of

objects on m

Persistent

, that is, m

Persistent

cre-

ates or updates a replica in m

Storage

. A descrip-

tor is saved when the state of the object changes.

Only modi�ed pages in the segments of the object

are saved.

4.4 Storage Object

An Apertos object is stored into the storage ob-

ject. The storage object is based on the Sprite log-

structured �le system [9]. The log-structured �le sys-

tem writes sequentially all modi�cations to disk in a

log to speed up both write operations and crash recov-

ery. The Sprite log-structured �le system introduces

a segment, which is a small part of the disk, to over-

come fragmentation problems and decrease log clean-



ing cost. Figure 9 shows an example of using segments

in a log-structured �le system. A log is written to a

write log

segment

old data new data free area

Figure 9: Segments in Log-Structured File System

segment sequentially. Once a segment is �lled, the

next log is written into the next free segment. The

Storage object makes a full segment free by a cleaning

operation performed during the night. Also, when the

number of free segments becomes less than the thresh-

old, a cleaning operation is invoked. The cleaning op-

eration moves all logs in a source segment to another

destination segment to free up the source segment.

The Storage object in the Apertos operating sys-

tem also uses segments, each each segment having a

generation number. The generation of segments is

introduced to minimize cleaning costs by localizing

related objects. Younger segments are cleaned fre-

quently, while older segments are not cleaned so fre-

quently. Figure 10 shows a generational cleaning op-

eration in a segment-based log-structured �le system.

During the cleaning operation, a log having an old ver-

free

0

1

2

copy to the same generation

copy to the older generation

Figure 10: Cleaning Segments in Log-Structured File

System

sion number in the source segment remains untouched,

that is, the log is cleaned. A log with a younger ver-

sion number is copied from the source segment to an-

other segment. If an object for a log is not modi�ed

during the threshold period, the log is copied into an

older segment. Otherwise, the log is copied to a tar-

get segment having an identical or younger generation

number.

In the current version of the storage object, the

size of a segment is over 1 megabyte, and the size is

a multiple of the cylinder size. The maximum genera-

tion number is 10. To prevent the read-fragmentation

problem, which is a problem that an object is split

into multiple logs and the cost of a read operation in-

creases, an entire object is written into one log. Since

the current Apertos operating system has no huge ob-

ject, this policy increases the e�ciency of read opera-

tions. For a large object whose size is bigger than that

of a segment, a large segment is created by merging

several segments.

The Storage object supports the following opera-

tions:

� The Connect operation connects a Disk object to

the Storage object. This reads the UNIX diskla-

bel in the target disk and sets the disk param-

eters. The current storage object uses one disk

partition to enable the UNIX operating system

and Apertos operating system to coexist on the

same disk.

� The Disconnect operation disconnects the con-

nected Disk object from the Storage object.

� The Newfs operation writes to free segments on

the disk.

� The Scan operation reads all disk logs, and cre-

ates an i-node table in memory. All i-nodes are

kept in memory to enable e�cient disk access.

The size of an i-node entry is not so large. It is

currently 14 bytes; 4 bytes for the object identi-

�er of the saved descriptor, 4 bytes for the block

address on disk, 4 bytes for the version number,

1 byte for the types of i-node entry, and 1 bytes

for 
ags.

� The Create operation creates an object index in

the storage object.

� The Read operation reads an object on disk.

� The Write operation writes an entire object to

disk.

� The Clean operation invokes a cleaning operation.

This is called at night or when the free area of the

disk space is exhausted.



4.5 Preliminary Measurements

The results have been obtained on a Sony PWS-

1550 workstation that has a 25MHz MC68030 CPU

with a minimum 4MB of physical memory. It features

an SCSI-1 controller. Objects are transferred in DMA

non synchronous transfer mode.

[13] shows the costs of kernel and re
ector opera-

tions. This paper shows the costs of the persistent

system.

Table 1 shows the results of our measurement of ob-

ject migration between metaspaces on the same host.

The object is 10K bytes, the biggest object in the pro-

totype system.

Table 1: Costs of Object Migration

primitive cost (in msec)

m

Base

$ m

Base

0:84

m

Base

! m

Persistent

99

m

Base

 m

Persistent

0:84

m

Base

! m

Storage

817

m

Base

 m

Storage

249

In addition to the cost of object migration between

m

Base

and m

Base

, an object migration from m

Base

to m

Persistent

needs a cost to create a replica of the

migrate object, as well as a cost for maintenance for

an object group. This data does not include the cost

of managing an object group. Object migration from

m

Base

to m

Storage

needs the cost of a Write oper-

ation to a storage object and a Delete operation on

m

Base

. Object migration from m

Storage

to m

Base

needs the cost of a Read operation of m

Storage

and a

New operation of m

Base

.

Table 2 shows the cost of the operations provided

by a Storage object. We used a 100-megabyte SCSI

disk device with 85 segments on the disk device.

5 Conclusion

We have shown a persistent object system in the

Apertos operating system. The re
ective architecture

of the operating system and object migration realizes

Table 2: Cost of Storage Operations

operation cost (in msec)

Connect 1.1

Disconnect 13.9

Newfs 4,402.4

Scan (initial state) 5,840.6

Create (1 object) 15.1

Read (1 object) 97.6

Write (1 object) 83.0

Clean (initial state) 193.4

a persistent object system. With this architecture,

an Apertos object becomes persistent by migrating in

an m

Persistent

metaspace. The m

Storage

metaspace

provides an abstraction of the object storage, and load

and save operations are replaced with object migra-

tion. The users/programmers of Apertos operating

system can treat changing properties of objects, in-

cluding location of objects, scheduling policy, memory

management policy, and persistence, within a single

interface, i.e., object migration. Adaptation of ex-

isting operating system facilities is possible in meta

programming level. These shows the advantages of

re
ective architecture in the construction of an oper-

ating system.

A prototype system of the Apertos operating sys-

tem is currently operating. In the prototype system,

a storage system based on a log-structured �le system

is implemented.

Our major goal of the research is to provide a con-

tinuous computing environment in the Apertos dis-

tributed operating system. To realize this goal, the

following issues remain to be solved.

� Mobile computers can not o�er large computation

power, large disks, or large memory. Thus, it is

di�cult for an entire computing environment to

migrate to a small computer such as laptop and

notebook types. The operating system should

support two operations: (1) to separate part of

a computing environment from an entire comput-

ing environment, and (2) to install a separated

part of the computing environment into an origi-



nal system.

� A local execution environment depends heavily on

the underlying hardware con�guration and sys-

tem software. Thus, a personal computing en-

vironment should adapt itself to the underlying

execution environment to continue the computa-

tion. It is di�cult to provide the same computing

environment on all computers. Thus, the system

has to provide a logically continuous computing

environment rather than a full-compatible com-

puting environment. For example, editing a pro-

gram does not need the same editing tool. Emacs

and vi may be used interchangeably to continue

editing text �les.

The prototype implementation of the Apertos oper-

ating system is available to anyone for nonpro�t pur-

pose.

3
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